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Abstract

Uncertainties in aerosol radiative forcings, especially those associated with clouds,
contribute to a large extent to uncertainties in the total anthropogenic forcing. The
interaction of aerosols with clouds and radiation introduces feedbacks which can affect
the rate of rain formation. In former assessments of aerosol radiative forcings, these5

effects have not been quantified. Also, with global aerosol-climate models simulating
interactively aerosols and cloud microphysical properties, a quantification of the aerosol
forcings in the traditional way is difficult to properly define. Here we argue that fast
feedbacks should be included because they act quickly compared with the time scale
of global warming. We show that for different forcing agents (aerosols and greenhouse10

gases) the radiative forcings as traditionally defined agree rather well with estimates
from a method, here referred to as radiative flux perturbations (RFP), that takes these
fast feedbacks and interactions into account. Based on our results, we recommend
RFP as a valid option to compare different forcing agents, and to compare the effects
of particular forcing agents in different models.15

1 Introduction

Aerosols affect climate directly by scattering and absorption of shortwave and thermal
radiation (direct effect). The global-mean net direct effect at the top-of-the-atmosphere
(TOA) is a cooling that partly offsets the warming due to greenhouse gases. It is esti-
mated as −0.5 W m−2 with a 5 to 95% confidence range of −0.1 to −0.9 W m−2 (Forster20

et al., 2007). In addition, aerosols modify the radiation budget indirectly by acting as
cloud condensation nuclei and ice nuclei. The cloud albedo enhancement (first indirect
effect, cloud albedo effect or indirect aerosol forcing) of warm stratiform clouds refers
to an increase in cloud droplet number concentration due to anthropogenic aerosols for
a constant liquid water content (Twomey, 1977). These more numerous and smaller25
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cloud droplets increase the total surface area and thus cloud albedo. The cloud albedo
effect can be calculated as a forcing because of the assumption of a constant liquid
water content. Ensemble-averaged global-mean model estimates of the cloud albedo
effect have remained rather constant over time (see Fig. 1) and amount to roughly
−0.9 W m−2. The −0.9 W m−2 estimate that is obtained from the average over all pub-5

lished estimates, treating each of them equal (one paper one vote) is slightly larger
than the estimate of the cloud albedo effect in the fourth assessment report of the
Intergovernmental Panel on Climate Change (IPCC) where a different weighting pro-
cedure was used. There the median value of the indirect aerosol forcing was estimated
as −0.7 W m−2 with a 5 to 95% range of −0.3 to −1.8 W m−2 (Forster et al., 2007). The10

rather large uncertainty in both the direct and indirect (cloud albedo effect) forcing ac-
counts for a large fraction of the uncertainty in the total anthropogenic forcing (Kiehl,
2007).

In addition to the cloud albedo effect, there are multiple other effects of aerosols
on clouds such as the cloud lifetime effect, the semi-direct effect and aerosol effects15

on mixed-phase, convective and cirrus clouds (Lohmann and Feichter, 2005; Denman
et al., 2007). However, these effects cannot be evaluated via the usual definition of
radiative forcing as the instantaneous change in radiative flux caused when the forcing
agent is imposed, because these effects do not act “instantaneously”. Also, if aerosols
and/or cloud droplet number concentrations are calculated interactively in the model,20

the calculation of the aerosol radiative forcing is not straightforward because aerosols
will then also influence the precipitation formation and with that cause an additional
change in cloud properties. Hence these effects are usually evaluated as a radiative
flux perturbation (RFP) (Haywood et al., 2009). The RFP is calculated as the differ-
ence in the top-of-the-atmosphere radiation budget between a present-day simulation25

and a pre-industrial simulation, both using the same sea surface temperatures. RFP
estimates thus include fast changes and interactions in the climate system that induce
changes in the meteorology. This does not conform to the pure definition of an instanta-
neous radiative forcing (Forster et al., 2007), in which only one radiatively active agent
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is changed, while leaving tropospheric profiles of temperature and other variables con-
stant.

The issue of how to define radiative forcings is not new. This metric aims to estimate
the influence of a particular climate perturbation on equilibrium global-mean surface
temperature change, hence allowing comparison of different perturbations without the5

need to actually conduct equilibrium climate-change simulations. The concept of radia-
tive forcing has been gradually refined, due to limitations that were found with the orig-
inal idea of instantaneous radiative forcing. For forcing agents that affect stratospheric
temperature, such as CO2 and ozone, the procedure recommended by IPCC is to al-
low stratospheric temperatures to adjust to the imposed forcing agent (a process that10

takes a few months), before calculating the “adjusted” forcing at the tropopause (Shine
et al., 1995). For increases of CO2, this adjustment cools the stratosphere, reducing
the net downwards flux at the tropopause by order 10% (Hansen et al., 2005). How-
ever, for stratospheric ozone depletion, omission of the adjustment has more drastic
effects, changing the sign of the forcing from negative to positive (Shine et al., 1995;15

Hansen et al., 2005). Thus for ozone in particular, the stratospheric adjustment is es-
sential if the radiative forcing is to be of any use as a predictor of the induced change
in global-mean surface temperature.

More recent studies have shown that using the adjusted radiative forcing, the change
in surface temperature per unit forcing, or climate sensitivity, is not strictly the same20

for different perturbations. To account for this, one approach suggested by Joshi et al.
(2003) and Hansen et al. (2005) is to obtain an efficacy (E ) and to display it next to forc-
ing estimates. E is defined as the ratio of the climate sensitivity parameter for a given
forcing agent to the climate sensitivity parameter for CO2. E can vary markedly for
different forcing agents and for different models, depending on how the forcing projects25

onto the various feedback mechanisms; see Forster et al. (2007) for a review. In par-
ticular, their Fig. 2.19 shows that for “realistic” perturbations of forcing agents in GCMs,
E generally lies in the range of 0.6 to 1.3. The outlying point with E∼1.65 in that figure
was derived by normalising ∆T obtained by Rotstayn and Penner (2001) in response
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to the combined cloud-albedo and lifetime effects by the forcing they calculated for the
cloud-albedo effect only. If instead ∆T is normalised by the RFP estimated by Rotstayn
and Penner (2001) for the combined effects, E=0.86 is obtained, in good agreement
with the value of 0.83 they obtained for the cloud-albedo effect when it was calcu-
lated as an instantaneous forcing. This shows that the adjusted forcing concept does5

not work especially well for simulations that include indirect effects beyond the cloud-
albedo effect. Further, the linear forcing-response concept may break down for certain
idealised perturbations, especially involving absorbing aerosols. Aerosols within a cer-
tain range of single scattering albedo can even have negative adjusted forcing but
induce a global-mean warming, i.e. E can be negative (Forster et al., 2007).10

In the last few years, several studies have investigated yet another method of calcu-
lating radiative forcing, mainly in the context of CO2 (Gregory et al., 2004; Forster and
Taylor, 2006; Gregory and Webb, 2008; Andrews and Forster, 2008). The method is
to regress the top-of-atmosphere radiative flux (N) against the global-mean surface air
temperature change (∆T ). The forcing is taken as the intercept of the regression line,15

i.e. as the value of N when ∆T=0. An interesting aspect of this method is that the effi-
cacy is included in the forcing estimate (Forster and Taylor, 2006). Another important
outcome from this work is that “fast feedbacks”, such as cloud changes that respond
directly to the forcing of CO2 rather than to ∆T , are now regarded as part of the forcing
(Gregory and Webb, 2008; Andrews and Forster, 2008). The “feedbacks” are consid-20

ered to be those that operate on longer time scales (those on which T changes), and
can be expressed as functions of ∆T . These conclusions are similar to those that have
arisen in aerosol modelling, where it also seems desirable to treat “fast feedbacks” as
part of the forcing. We note that the regression method may be useful for the evalua-
tion of aerosol forcings in atmospheric models, but it also requires a mixed-layer or full25

ocean model, which not all groups have access to. A modification of the RFP method,
in which land-surface temperature is fixed in addition to sea-surface temperature, was
used by Shine et al. (2003) in an intermediate GCM. However, fixing land-surface tem-
perature is difficult in a full GCM that includes a diurnal cycle. In this study we focus on
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the RFP method, which is straightforward to calculate in most global aerosol models.

2 Method

Two questions arise about the RFP method: (1) Is it a valid approach for comparing
aerosol effects that includes fast feedbacks and interactions due to the cloud lifetime
effect, semi-direct effect or aerosol interactions with mixed-phase and ice clouds with5

other forcings such as those from the well-mixed greenhouse gases (GHG) and (2)
Can it be used for comparing these aerosol effects between different models?

The difference between the forcing (as traditionally defined) and the RFP due to
the aerosol indirect effect was first investigated by Rotstayn and Penner (2001). They
found from their atmospheric GCM coupled to a mixed layer ocean model that the10

differences in the climate sensitivity due to using the RFP method were smaller than the
differences in the climate sensitivity due to different forcings. They hence argued that
RFP estimates from aerosols should be compared to forcing estimates from GHG. The
utility of the RFP method was further explored for a range of forcing agents by Hansen
et al. (2002, 2005), also in the context of a single GCM; they similarly concluded that it15

was a useful approach. Put differently, because our interest is in the long-term climate
response, which is delayed decades to centuries by the ocean’s thermal inertia, it is
reasonable to allow fast feedbacks to be included in the forcing (as in the RFP method),
since these feedbacks are felt as forcings by the ocean and thus affect the long-term
climate response (Hansen et al., 2005). This also makes sense from an energy balance20

perspective (Murphy et al., 2009) and is more suitable in the conceptual framework of
radiative forcing and climate sensitivity (Gregory et al., 2004; Knutti and Hegerl, 2008;
Quaas et al., 2009a).

For indirect aerosol effects, the advantage of the RFP method over the instanta-
neous forcing is that it allows the radiative impact of aerosols on both cloud albedo25

and precipitation efficiency to be evaluated. As shown in Fig. 1, if estimates of other
aerosol-cloud interactions are considered in addition to the cloud albedo effect, then
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these estimates are mostly larger than the cloud albedo effect alone. This suggests
that most of the model-calculated additional effects do not offset the cloud albedo ef-
fect, but rather constitute an additional cooling. Although the total indirect effect shows
more scatter than the cloud albedo effect, more recent estimates indicate smaller (less
negative) values. Some of the smallest estimates result from estimates of the indirect5

aerosol forcing from satellite data or from general circulation model (GCM) estimates
that constrain the indirect aerosol effect using satellite data. Also, some aerosol inter-
actions with mixed-phase clouds can partly offset the forcing due to the cloud albedo
effect.

A complementary approach to estimate the total anthropogenic aerosol effect is to10

infer it as a residual using the observed temperature record over land, and estimates
of the ocean heat uptake and the evolution of greenhouse gas and solar radiative forc-
ing (Anderson et al., 2003; Hegerl et al., 2007) (dashed area in Fig. 1). One estimate
includes only the indirect aerosol effect in which case additional assumptions about
the direct aerosol effect were made (solid black line in Fig. 1). The so-derived total15

anthropogenic aerosol effect or indirect aerosol effect would, however, also include
any other possible hitherto unknown cooling effect, but this is thought to be small.
These so-called inverse estimates constrain the total cooling forcing over the 20th cen-
tury, attributable to anthropogenic aerosols, to a likely range1 of −0.1 to −1.7 W m−2

(Hegerl et al., 2007). A total anthropogenic aerosol effect that is more negative than20

−1.7 W m−2 would thus be inconsistent with the observed warming. An approach that
constrains the total cooling effect since 1950 purely from an energy balance perspec-
tive limits it to between −0.7 to −1.5 W m−2 (Murphy et al., 2009).

In this paper we compare the forcings due to two well-mixed greenhouse gases,
the direct aerosol forcing and the cloud albedo effect as described in Table 1 from25

five atmospheric GCMs with the respective RFP that take fast feedbacks and interac-
tions into account. Indirect aerosol effects beyond the cloud albedo effect cannot be
compared this way because they comprise fast feedbacks and interactions and thus

1likely refers to a >66% probability of occurrence
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no forcing calculation can be done for them. The versions of the participating GCMs
are: CSIRO in low resolution (Rotstayn et al., 2007; Rotstayn and Liu, 2009), EC-Earth
(Storelvmo et al., 2009), ECHAM5 (Lohmann et al., 2008), GISS (Menon et al., 2008),
and HadGEM2 (Collins et al., 2008). These models vary in the complexity with which
they describe aerosol-cloud interactions and thus provide a reasonable spread in radia-5

tive forcing and radiative flux perturbation estimates. All models include anthropogenic
emissions of sulfate precursors, organic and black carbon. Therefore the direct aerosol
effect accounts for black carbon in all models and the semi-direct effect of black carbon
is accounted for in the RFP calculations. However, only in the CSIRO and ECHAM5
GCMs does hydrophilic black carbon also contribute to the number of cloud droplets10

and thus to the cloud albedo effect. The radiative forcing and RFP calculations are
conducted by using prescribed sea-surface temperature and sea ice extent, which is
also referred to as the Hansen-style method or “quasi-forcing” (Rotstayn and Penner,
2001) to estimate forcing (Hansen et al., 2002).

For the forcing calculations using the traditional forcing definition, denoted F , the15

radiation code of the models was called twice keeping the meteorology fixed. The
differences between two radiative transfer calculations due to pre-industrial GHG or
aerosol concentrations versus their present-day values were extracted at the top-of-
the-atmosphere and at the tropopause (or at 100 hPa which some GCMs took as a
surrogate for the tropopause). The forcing calculation at the tropopause is the instan-20

taneous value, which does not account for the fast stratospheric temperature adjust-
ment as a response to the warming due to molecular absorption by greenhouse gases
(Hansen et al., 1997). Calculation of the adjusted forcing in a GCM would require of-
fline radiative computations or other elaborate procedures (Stuber et al., 2001), so we
take the instantaneous value as an approximation to the adjusted value. Results shown25

in Table 1 of Hansen et al. (2005) suggest that the instantaneous forcing for present-
day minus pre-industrial CO2 is roughly 10% larger than the adjusted forcing (1.55 and
1.40 W m−2 respectively, for a CO2 change from 291 to 370 ppm). In the second set
of experiments, the simulations were run for 5–10 years each after a spin-up period of
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several months under conditions appropriate for the present-day climate, a time scale
which allows for all fast feedbacks to fully act. The RFP is then defined as the differ-
ence in global mean net TOA radiative fluxes between two such simulations with the
same sea surface temperatures, one with perturbed, and one with unperturbed forc-
ing agents. As the meteorology is different when varying greenhouse concentrations5

or aerosols, here the radiative effects of the forcing agents will be evaluated as RFP,
defined as the difference in the net TOA radiation balance between the pre-industrial
and present-day simulations.

In cases where GCMs have aerosols that interact with cloud microphysics and where
the aerosols are radiatively active at the same time, RFP calculations for individual10

aerosol effects are more complicated. Here the interaction between aerosols and cloud
droplets is artificially deactivated by prescribing a cloud droplet number concentration
Nc for the calculation of precipitation formation. Moreover, aerosol concentrations were
put to zero for the forward integration in time of the model. Then the forcings due to
the direct aerosol effect and the cloud albedo effect are obtained from the difference15

of the forcing calculations in a simulation with present-day and one with pre-industrial
emissions. Taking the difference between present-day and pre-industrial forcing is nec-
essary as in each simulation the total forcing (present-day minus zero aerosols and
pre-industrial minus zero aerosols) is calculated. RFP calculations are performed as
for GHGs. For all radiative flux perturbations, the interannual standard deviation is cal-20

culated as
√

2/n×SDp, where n is the number of years in the simulation and SDp is
the pooled standard deviation (Snedecor and Cochran, 1989).

3 Radiative forcing versus radiative flux perturbation

The estimates of RFP vs. F at TOA and at the tropopause for the different forcing
agents from the five GCMs are shown in Fig. 2. The difference between tropopause and25

TOA forcing is mainly important for CO2 as an increase in CO2 warms the troposphere
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but cools the stratosphere. If a stratospheric temperature adjustment would have been
allowed in these simulations, then F at TOA would equal F at the tropopause. There-
fore for CO2 RFP at TOA should rather be compared to F at the tropopause (right
panel), which is a reasonable approximation to the adjusted forcing. If the F values in
the right panel were reduced by about 10%, to account for omission of the stratospheric5

adjustment in our runs (Hansen et al., 2005), the slope and the correlation coefficient
of the least squares fit through the data would be further improved.

For the majority of these different estimates, the F values for the net radiation at the
tropopause fall within the RFP± their interannual standard deviation. Deviations occur
mainly for the larger forcings (carbon dioxide and the first indirect effect) especially for10

those models with larger forcings for a given species. For individual models explana-
tions can be found that relate to the way the cloud feedback differs in these simulations.
The negative F and RFP values for the aerosol effects and their deviations from the
one-to-one line are reflected in the shortwave F and RFP values. The positive F and
RFP values for the greenhouse gases and their deviations from the one-to-one line are15

dominated by their longwave signals (Fig. 2). The scatter plots of F versus RFP also
include some earlier literature estimates by Rotstayn and Penner (2001) and Hansen
et al. (2005).

The deviation from the 1:1 line in the CO2 RFP vs. forcing at the tropopause may
be indicative of a semi-direct cloud response to CO2 forcing. This should be investi-20

gated in terms of the differences from the 1:1 line in the CO2 RFP vs. forcing at the
tropopause for all-sky minus clear-sky conditions. However, as no model saved the
clear-sky forcing data at the tropopause, we attempt to estimate the semi-direct cloud
response to CO2 forcing from the comparison of the difference in net radiation (RFP
– TOA forcing for all-sky conditions) – (RFP – TOA forcing for clear-sky conditions)25

assuming that this difference will not be that different at the tropopause and at TOA.
The multi-model average amounts to 0.15 W m−2, in agreement with the small positive
semi-direct cloud response to CO2 forcing found by Gregory and Webb (2008).
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Deviations between the forcing and RFP estimates are smaller in the clear-sky case
where the influence of cloud feedbacks is much smaller (Fig. 3). Unfortunately the
clear-sky results are only available for the TOA forcing but not for the tropopause forc-
ing. Changes in total cloud cover, liquid and ice water path remain below 1% of their
present-day values in all RFP simulations and models (not shown). Thus, the zonal5

and annual mean pattern of the RFP estimates are a noisy version of the forcing distri-
butions because of the inclusion of fast interactions and feedbacks in the latter but are
not fundamentally different (Figs. 4–6).

4 Conclusions

In this paper we argue that feedbacks and interactions that are fast as compared to10

the time scale of global warming should be included when estimating the total anthro-
pogenic aerosol effect. Doing so allows the total anthropogenic aerosol effect, which
we cannot evaluate as a forcing precisely because it includes fast feedbacks and inter-
actions and needs to be obtained from the RFP method, to be compared to the forcings
due to well-mixed greenhouse gases.15

We showed that the zonal and annual mean pattern of the RFP estimates are a noisy
version of the forcing distributions but do not differ systematically. The global annual
mean values mostly fall within the interannual standard deviation of the RFP simula-
tions. This is a very powerful result as it shows that RFP estimates are consistent with
forcing calculations using the traditional approach for all the species/effects considered20

here.
We thus conclude that assessing different forcing agents with the RFP method is a

valid option to be considered in future IPCC reports. Moreover, replacing the global-
mean aerosol forcing by its RFP has its merits because it is the overall aerosol flux
perturbation that is needed for the global energy balance (Murphy et al., 2009).25
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Appendix A

References for Fig. 1

A1 Cloud albedo effect

Kaufman and Chou (1993), Jones et al. (1994), Boucher and Lohmann (1995), Chuang5

et al. (1997), Feichter et al. (1997), Lohmann and Feichter (1997), Rotstayn (1999),
Lohmann et al. (2000), Kiehl et al. (2000), Jones et al. (2001), Williams et al. (2001),
Ghan et al. (2001), Rotstayn and Penner (2001), Chuang et al. (2002), Kristjánsson
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Table 1. Experimental set-up.

Forcing agent pre-industrial concentration present-day concentration

CO2 280 ppm 379 ppm
CH4 0.715 ppm 1.774 ppm
direct aerosol effect pre-industrial emissions (1750 or 1860) present-day (year 2000) emissions
cloud albedo effect pre-industrial emissions (1750 or 1860) present-day (year 2000) emissions
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Figures

Fig. 1. Model, satellite and inverse estimates of the aerosol indirect effects over the last two decades. Per

method or effects considered, each symbol represents one published estimate (one paper one vote). Blue repre-

sents estimates of the cloud albedo effect from GCMs (circles), GCMs combined with satellite measurements

(squares) and satellite only (triangles). Red represents estimates of both the cloud albedo and cloud lifetime ef-

fect from GCMs (circles) and GCMs combined with satellite estimates (squares). The yellow circle represents

an estimate of the cloud albedo, lifetime, direct and semi-direct effects. Black circles represent the aerosol

effects on stratiform and convective clouds and green circles represent estimates of aerosol effects on liquid

and mixed-phase clouds. The black stippled area refers to inverse estimates. In case of multiple estimates per

paper, the vertical bars denote the standard deviation. See supplement for the individual papers, from which the

estimates are obtained.
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Fig. 1. Model, satellite and inverse estimates of the aerosol indirect effects over the last two decades. Per method or
effects considered, each symbol represents one published estimate (one paper one vote). Blue represents estimates
of the cloud albedo effect from GCMs (circles), GCMs combined with satellite measurements (squares) and satellite
only (triangles). Red represents estimates of both the cloud albedo and cloud lifetime effect from GCMs (circles) and
GCMs combined with satellite estimates (squares). The yellow circle represents an estimate of the cloud albedo,
lifetime, direct and semi-direct effects. Black circles represent the aerosol effects on stratiform and convective clouds
and green circles represent estimates of aerosol effects on liquid and mixed-phase clouds. The black stippled area
refers to inverse estimates. In case of multiple estimates per paper, the vertical bars denote the standard deviation.
See appendix for the individual papers, from which the estimates are obtained.
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Fig. 2. Net, shortwave and longwave RFP versus TOA and tropopause F , respectively, from five GCMs.

Vertical bars denote the interannual standard deviation in the radiative flux perturbation calculations. The slope

of the least square fit through the data as well as the correlation coefficient r are shown at the bottom. RFP vs.

F values from the literature (Rotstayn and Penner, 2001; Hansen et al., 2005) are added as well.

19

Fig. 2. Net, shortwave and longwave RFP versus TOA and tropopause F , respectively, from five GCMs. Vertical
bars denote the interannual standard deviation in the radiative flux perturbation calculations. The slope of the least
square fit through the data as well as the correlation coefficient r are shown at the bottom. RFP vs. F values from the
literature (Rotstayn and Penner, 2001; Hansen et al., 2005) are added as well.
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Fig. 3. As figure 2, but for the clear-sky net, shortwave and longwave RFP versus TOA F from four GCMs.
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Fig. 3. As Fig. 2, but for the clear-sky net, shortwave and longwave RFP versus TOA F from
four GCMs.
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Fig. 4. Annual zonal means of RFP vs. F [W m−2] for the different forcing agents from the HadGEM2 and

ECHAM5 GCMs
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Fig. 4. Annual zonal means of RFP vs. F [W m−2] for the different forcing agents from the
HadGEM2 and ECHAM5 GCMs.
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Fig. 5. Annual zonal means of RFP vs. F [W m−2] for the different forcing agents from the
EC-Earth and GISS GCMs.
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Fig. 6. Annual zonal means of RFP vs. F [W m−2] for the different forcing agents from the
CSIRO GCM.
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